
Page 1 of 24

 JavaScript

 Chapter 1

 Introduction to JavaScript

What is JavaScript?

JavaScript is a commonly used programming language for developing

interactive and dynamic websites. It is a flexible programming language

that can be used on both the client and server sides. From basic form

validation to intricate web-based games, JavaScript is a must when

developing interactive web applications.

History of JavaScript

In May 1995, Brendan Eich, a programmer at Netscape Communications
Corporation, developed JavaScript in ten days. JavaScript was known by
many names at first, including "Mocha" and "LiveScript," until Netscape
decided on the name "JavaScript." JavaScript was first used in Netscape

Navigator 2.0, which at the time was the most popular browser. Netscape
presented JavaScript for standardization to the European Computer
Manufacturers Association (ECMA) in 1996. The standardized version
was known as ECMAScript.

Features of JavaScript

 Interpreter: JavaScript is an interpreted language, which means
it is run immediately by a web browser without the need for any
further compilation.

 DOM Manipulation: JavaScript has the ability to manipulate the
Document Object Model (DOM), which describes the structure of
a web page.

 Event Handling: JavaScript allows developers to construct
event handlers to respond to different user interactions and
events, such as button clicks and form submissions.

Page 2 of 24

 Case Sensitive: JavaScript is a case-sensitive language.

 Control Statements: Javascript has control statements such as
if-else-if, switch case, and loop. These control statements allow
users to create complicated programs.

 Dynamic Typing: JavaScript is a dynamically typed language,
which implies that when declaring variables, you do not need to
declare data types.

How to add JavaScript in html document ?

The <script> tag is used to add JavaScript code in an HTML document.

Example:

JavaScript Comments

JavaScript comments include explanations or notes in the code that the
browser does not execute or process. They serve only to help developers
understand the code.

There are two types of comments in JavaScript:

 Single Line Comments

 Multi-line Comments

Single Line Comments

Single line comments start with //. Any information between // and the end
of the line will be ignored by JavaScript.

Example:

<script>

document.getElementById("demo").innerHTML = "My First JavaScript";

</script>

let name = john;

// This is a single line comment

console.log(name);

Page 3 of 24

Multi-line Comments

Multi-line comments start with /* and end with */. Any information

between /* and */ will be ignored by JavaScript.

Example:

Chapter 2

JavaScript Variables

Variables are used in JavaScript to store data.

Declaring Variables

To declare a variable in JavaScript use the var or let keyword followed by
the name of the variable.

Example:

Variable Naming Rules

The rules for naming variables are as follows.

 Variable names must begin with either a letter, an underscore

(_), or the dollar symbol ($).

 Variable names cannot start with numbers.

 Variable names are case-sensitive.

Example:

let name = john;

/* This is a

multi line

comment */

console.log(name);

var x;

let y;

Page 4 of 24

JavaScript Data Types

JavaScript provides various data types that you can use to store different
types of data.

There are mainly two types of data types in JavaScript:

 Primitive data types.

 Non-primitive data types.

Primitive Data Types

There are six primitive data types in JavaScript:

 String

 Number

 Boolean

 Undefined

 Null

 Symbol

String

String is used to represents textual data, enclosed within single (' ') or

double (" ") quotes.

Example:

//valid variable name

let name = john;

let _name = john;

let $name = john;

//invalid variable name

let 2name = john;

// Double quotes

let name = "James";

// Single quotes

let name = 'John';

Page 5 of 24

Number

Number represents integer and floating-point numbers.

Example:

Boolean

Boolean data types represent logical values that are either true or false.

Example:

Undefined

The undefined data type represents a value that has not been assigned.

Example:

Symbol

The Symbol data type represents a unique identifier.

Example:

Non-primitive data types

There are mainly three types of non-primitive data types in JavaScript:

 Object

let number1 = 24;

let number2 = 4.33;

let isTrue = true;

let isFalse = false;

let num;

console.log(num); // undefined

let val1 = Symbol("Hello");

let val2 = Symbol("Hello");

Page 6 of 24

 Array

Object

JavaScript objects are separated by curly braces {}.

Example:

Array

Arrays are written with square brackets. Array items are separated by
commas.

Example:

Chapter 3
JavaScript Operators

An operator is a special symbol in JavaScript that performs operations on
operands.

There are several types of operators in JavaScript, including:

 Arithmetic Operators

 Assignment Operators

 Comparison Operators

 Logical Operators

 Bitwise Operators

Arithmetic Operators

Arithmetic Operators are used to perform mathematical operations

let student = {

 name: "John",

 age: 22,

 education: "3rd year"

};

let numbers = [20, 40, 60, 80]

console.log(numbers[0]);

Page 7 of 24

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

++ Increment

-- Decrement

Example:

Output:

Assignment Operators

Assignment operators are used to assign values to variables.

Operator Description Example

= Assignment operator a = 5;

+= Addition assignment a += 5;

-= Subtraction Assignment a -= 3;

*= Multiplication
Assignment

a *= 2;

/= Division Assignment a /= 2;

%= Modulus Assignment a %= 2;

Example:

let x = 6;

let y = 4;

console.log('x + y = ', x + y);

console.log('x - y = ', x - y);

console.log('x * y = ', x * y);

console.log('x / y = ', x / y);

10

2

24

1.5

let x = 6;

Page 8 of 24

Comparison Operators

Comparison operators are used to compare two values.

Operator Description

== Equal

!= Not Equal

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

Example:

Output:

Logical Operators

Logical operators perform logical operations and return a boolean value.

Operator Description Example

&& Logical AND x && y

|| Logical OR x || y

! Logical NOT !x

let x = 5;

let y = 5;

console.log(x == y);

console.log(x != y);

console.log(x > y);

console.log(x >= y);

console.log(x < y);

console.log(x <= y);

true

false

false

true

false

true

Page 9 of 24

Example:

Output:

Bitwise Operators

Bitwise operators are used to deal with binary operations.

Operator Description

& Bitwise AND

| Bitwise OR

~ Bitwise NOT

<< Left shift

Example:

Output:

let x = 5;

let y = 5;

console.log(x && y);

console.log(x || y);

5

5

let x = 10;

let y = 12;

result = x & y;

console.log(result);

8

Page 10 of 24

Chapter 4

JavaScript Control Flow

if...else Statement

In JavaScript, the if..else statement is used to make decisions. It allows
you to execute a block of code if a specified condition is true and another
block of code if the condition is false.

There are three types of if-else statements in JavaScript:

 if statement

 if...else statement

 if...else ladder statement

If Statement

The if statement is used to execute a block of code if a given condition is
true.

Syntax:

Example:

Output:

if (condition) {

 // block of code to be executed if the condition is true

}

let x = 8;

if (x > 5) {

 console.log("x is greater than 5");

}

x is greater than 5

Page 11 of 24

If...else statement

The If...else statement is used to execute a block of code if a specified
condition is true and another block of code if the condition is false.

Syntax:

Example:

Output:

If else ladder

The "if-else ladder" is a control structure in JavaScript that allows you to
execute a different block of code depending on multiple conditions.

Syntax:

if (condition) {

 // block of code to be executed if the condition is true

} else {

 // block of code to be executed if the condition is false

}

let x = 8;

if (x > 5) {

 console.log("x is greater than 5");

} else {

 console.log("x is not greater than 5");

}

x is greater than 5

if (condition) {

 // block of code to be executed if condition1 is true

} else if (condition2) {

 // block of code to be executed if the condition1 is false and

condition2 is true

} else {

 // block of code to be executed if the condition1 is false and

condition2 is false

}

Page 12 of 24

Example:

Output:

Switch Statement

The "switch" statement in JavaScript is another control structure that allows
you to execute a different block of code depending on a specific value.

Syntax:

let x = 10;

if (x > 15) {

 console.log("x is greater than 15");

} else if (x > 10) {

 console.log("x is greater than 10 but less than or equal to 15");

} else {

 console.log("x is equal to 10");

}

x is equal to 10

switch (expression) {

 case value1:

 // block of code

 break;

 case value2:

 // block of code

 break;

 case value3:

 // block of code

 break;

 default:

 // block of code

}

Page 13 of 24

Example:

Output:

For Loop

A for loop In JavaScript is used to execute a piece of code a specified
number of times.

Syntax:

Example:

Output:

let x = 3;

switch (x) {

 case 1:

 console.log("I am Statement 1");

 break;

 case 2:

 console.log("I am Statement 2");

 break;

 case 3:

 console.log("I am Statement 3");

 break;

 default:

 console.log("I am default");

}

I am Statement 3

for (initialization; testExpression; increment/decrement) {

// block of code

}

let x = 5;

for (let i = 1; i <= 5; i++) {

 console.log("Hello JavaScript");

}

Hello JavaScript

Hello JavaScript

Hello JavaScript

Hello JavaScript

Hello JavaScript

Page 14 of 24

For-of loop

The for-of loop is used to iterate over the values of an iterable object, such
as an array or a string.

Syntax:

Example:

Output:

While Loop

The while loop in JavaScript is used to execute a block of code as long as
a specified condition is true.

Syntax:

Example:

for (variable of object) {

 // code to be executed

}

let numbers = [1, 2, 3, 4, 5];

for (let number of numbers) {

 console.log(number);

}

1

2

3

4

5

while (condition) {

 // block of code

}

Page 15 of 24

Example:

Output:

Chapter 5

JAVASCRIPT Types

Strings

A string in JavaScript is a primitive data type that represents a sequence of

characters. It is enclosed by single quotes (' '), double quotes (" "), or

backticks (' ').

Example:

String Methods

JavaScript has several built-in methods for manipulating strings.

let i = 1;

while (i <= 8) {

 console.log(i);

 i++;

}

1

2

3

4

5

6

7

8

let name1 = "Peter";

let name2 = 'Perker';

let greeting = `Hello ${name}!`;

Page 16 of 24

length

The length method returns the length of a string.

Example:

Output:

concat

The concat() method method is used to concatenate two or more strings.

Example:

Output:

indexOf

The indexOf() method is used to find the index of a specific character in a

string.

Example:

Output:

let str = "Hello JavaScript";

console.log(str.length);

16

let str1 = "Hello";

let str2 = " JavaScript";

console.log(str1.concat(str2));

Hello JavaScript

let str = "Hello JavaScript";

console.log(str.indexOf("J"));

6

Page 17 of 24

toUpperCase and toLowerCase

The toUpperCase() and toLowerCase() methods are used to

convert a string to uppercase or lowercase letters.

Example:

Output:

JavaScript Number

Numbers are a fundamental data type in JavaScript that represents
numerical values. They can be either integer or floating-point numbers.

Example:

JavaScript Number Methods

There are various methods available in JavaScript Date object.

Method Description

isNaN() It determines whether the provided
value is NaN.

isInteger() It determines whether the provided
value is an integer.

parseFloat() It parses a string argument and
returns a floating-point number.

parseInt() It parses a string argument and
returns an integer number.

toFixed() Formats a number using fixed-point
notation.

let str = "Hello JavaScript";

console.log(str.toUpperCase());

console.log(str.toLowerCase());

HELLO JAVASCRIPT

hello javascript

let x = 4;

let y = 4.13;

Page 18 of 24

toString() It converts a number to a string.

Example:

Output:

JavaScript Arrays

Arrays in JavaScript are a fundamental data structure used to store multiple
values in a single variable.

Example:

Array Methods

JavaScript has many built-in methods for manipulating arrays.

length

The length method returns the number of elements in an array.

Example:

Output:

let x = 10;

console.log(Number.isInteger(a));

let y = NaN;

console.log(Number.isNaN(b));

let c = parseInt('05');

console.log(c);

true

true

6

let cars = ["Thar", "Scorpio", "BMW", "Ferrari"];

let myArr = ["Thar", "Scorpio", "Ferrari"];

console.log(myArr.length);

Page 19 of 24

push

The push() method is used to add an element to the end of an array.

Example:

Output:

pop

The pop() method is used to remove the last element of an array.

Example:

Output:

3

let myArr = ["Thar", "Scorpio", "Ferrari"];

myArr.push("Audi");

console.log(myArr);

['Thar', 'Scorpio', 'Ferrari', 'Audi']

let myArr = ["Thar", "Scorpio", "Ferrari"];

myArr.pop();

console.log(myArr);

['Thar', 'Scorpio']

Page 20 of 24

JavaScript Date

The Date object in JavaScript is used to interact with dates and times. You

can create a new Date object to represent either the current date and time

or a specific date and time.

JavaScript Date Methods

There are various methods available in JavaScript Date object.

Method Description

getDate() Gets the day of the month (1-31)
according to local time

getFullYear() Gets the year according to local time

getMonth() Gets the month, from 0 to 11
according to local time

setDate() Sets the day of the month according
to local time

setFullYear() Sets the full year according to local
time

setMonth() Sets the month according to local
time

Example:

let date = new Date();

let day = date.getDate();

console.log(day);

let date = new Date();

let year = date.getFullYear();

console.log(year);

let date = new Date();

let month = date.getMonth()+1;

console.log(month);

let date = new Date();

date.setDate(26);

let D = date.getDate();

console.log(D);

Page 21 of 24

Output:

JavaScript Booleans

A boolean is a data type in JavaScript representing either true or false.

Example:

JavaScript Boolean Methods

Here is a list of boolean methods in JavaScript.

Method Description

toString() Converts Boolean into String.

valueOf() Returns the value of a boolean.

Example:

Output:

25

2024

3

26

let isTrue = true;

let isFalse = false;

// toString Method

let bool = new Boolean(10);

console.log(bool.toString());

// valueOf Method

let bool = new Boolean(true);

console.log(bool.valueOf());

true

true

Page 22 of 24

JavaScript Map

JavaScript Maps is a data structure in JavaScript that was introduced in
ECMAScript 6 (ES6). They contain key-value pairs.

Example:

JavaScript Map Methods

There are various methods available in JavaScript Map object.

Method Description

set() Adds or updates a key-value pair in
the Map.

get() Returns the value associated with the
specified key.

delete() Removes the specified element from
a Map object.

has() Checks if the Map contains a specific
key.

forEach() Calls a function for each key/value
pair in a Map

entries() Returns an iterator with the key-value
pairs in a Map

set() Method

To add elements to a Map, use the set() method:

Example:

let map1 = new Map();

console.log(map1); // Map {}

let myMap = new Map();

myMap.set('name', 'John');

myMap.set('age', 22);

console.log(myMap.get('name'));

Page 23 of 24

Output:

get() Method

The get() method gets the value of a key in a Map.

Example:

Output:

Chapter 6

JavaScript Objects

JavaScript object is a variable that can store multiple data in key-

value pairs.

Example:

Output:

John

let myMap = new Map();

myMap.set(1, 'JavaScript');

console.log(myMap.get(1));

JavaScript

const student = {

 firstName: "Jack",

 rollNo: 32

};

console.log(student);

{ firstName: 'Jack', rollNo: 32 }

Page 24 of 24

JavaScript Object Methods

Object methods are actions that can be performed on objects.

Example:

Output:

const person = {

 name: "Bob",

 age: 30,

 greet: function () {

 console.log("Bob says Hi!");

 }

};

person.greet();

Bob says Hi!

	Introduction to JavaScript
	What is JavaScript?
	History of JavaScript
	Features of JavaScript
	How to add JavaScript in html document ?

	JavaScript Comments
	Single Line Comments
	Multi-line Comments

	JavaScript Variables
	Declaring Variables
	Variable Naming Rules

	JavaScript Data Types
	Primitive Data Types
	String
	Number
	Boolean
	Undefined
	Symbol
	Non-primitive data types
	Object
	Array

	JavaScript Operators
	Arithmetic Operators
	Assignment Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators

	if...else Statement
	If Statement
	If...else statement
	If else ladder

	Switch Statement
	For Loop
	While Loop
	Strings
	String Methods
	length
	concat
	indexOf
	toUpperCase and toLowerCase

	JavaScript Number
	JavaScript Number Methods

	JavaScript Arrays
	Array Methods
	length
	push
	pop

	JavaScript Date
	JavaScript Date Methods

	JavaScript Booleans
	JavaScript Boolean Methods

	JavaScript Map
	JavaScript Map Methods
	set() Method
	get() Method

